Deducción natural en la academia  LAPACADEMIA VIRTUAL DE FILOSOFÍA L.A.P.

Gentzen : Ejercicios resueltos de deducción natural para poner en prácticas las reglas de inferencia:

 

Gracias por apoyar la lógica y la filosofía por internet con tu "me gusta". ¡Nos ayudáis crecer! :-)

 

 

Adte amigo nuestro y ten acceso a referncias, libros, citas, recomendaciones manuales, etc. de filosofía y lógica

 

Resuelva los siguientes ejercicios mediante el método de deducción natural propuesto por Gentzen para lógica de predicados aplicando las reglas básicas de inferencia expuestas en la teoría de la demostración:

NIVEL 1

[Ejercicio 13] [Ejercicio 14]

-1.∀x(Px→ Qx)

⊦∃xQx -1.∀xPx^∀xQx ⊦∀x(Px^Qx)
-2. Pa      
3. Pa → Qa E∀1 (x:a)    
4. Qa E→ 2,3    
5. ∃xQx I∃4    

NIVEL 2

[Ejercicio 15] [Ejercicio 16]
-1.∀xPx v ∀xQx ⊦∀x(Px^Qx) -1.∀x∀y∀z((Rxy^Ryz)→Rxz) ⊦∀x∀y(Rxy→¬Ryx)
    -2.∀x¬Rxx  
    3. Rab  
    | 4. Rba  
    | | 5. Rab ^ Rba I^3,2
    | | 6. Rab ^Rba --> Raa E∀1 (x:a, y: b, z:a)
    | | 7. Raa E→5,6
    | | 8. ¬Raa E∀2 (x:a)E
    | 9. Raa^¬Raa i^7,8
    10. ¬Rba i^4-9
    11. Rab --> ¬Rba i→3-10
    12. ∀x∀y(Rxy→¬Ryx) i∀11

NIVEL 3

[Ejercicio 17]
-1.∀x(Px→ Qx) ⊦∀x(∀y(Px^Ryx)→∀y(Qx ^Ryx))
1. ∀y(Pa^Rya)  
| 2. Pa ^ Rba E∀1 (y:b)
| 3. Pa E^2
| 4. Pa→ Qa E∀1 (x:a)
| 5. Qa E→3,4
| 6. Rba E^2
| 7.Qa ^ Rba I^5,6
8. ∀y(Qa^Rya) I∀7 (b:y)
9. ∀y(Pa^Rya) →∀y(Qa^Rya I→1-8
10. ∀x(∀y(Px^Ryx)→∀y(Qx ^Ryx)) I∀9 (a:x)

 

[Ejercicio 18]

-1.∀x(Px→(

∀y(Qy^Ryz)↔¬Sx))

⊦∀x((Px^∀y¬(Qy^Ryx))→

¬Sx)

 

Soluciones

 

¿Quieres conocer al profesor de lógica formal de la Academia LAP?

 

Siguiente>>

 

 

Por favor, dejad vuestra opinión sobre los ejercicios de la página web para que pueda mejorarlos o ampliarlos. ¡Muchísimas gracias a todos! < <

 

Comentarios, sugerencias y críticas